每天30吨一体化污水处理设备一体机

每天30吨一体化污水处理设备一体机
小宇环保积极引进*的环保设备和技术,大力推广与惯例接轨的项目运作,努力为业主提供服务,精心为社会创造环品,已完成数千项环保工程,部分一体化污水处理设备产品出口国外,并跟踪服务,赢得客户赞赏。
臭氧-生物活性炭技术
臭氧-生物活性炭工艺是采用活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒四种技术合为一体的工艺。首先利用臭氧预氧化作用,初步氧化分解水中的有机物及其它还原性物质,降低生物活性炭滤池的有机负荷,同时臭氧氧化能使水中难以生物降解的有机物断链、开环,转化成简单的脂肪烃,改变其生化特性。臭氧除了自身能将某些有害有机物氧化变成无害物外,在客观上还可以增加小分子的有机物,使活性炭的吸附功能得到更好的发挥。活性炭能够迅速地吸附水中的溶解性有机物,同时也能富集微生物,使其表面能够生长出良好的生物膜,靠本身的充氧作用,炭床中的微生物就能以有机物为养料大量生长繁殖好气菌,致使活性炭吸附的小分子有机物充分生物降解。臭氧-生物活性炭工艺能够有效地去除水中的有机物和氨氮,对水中的无机还原性物质、色度、浊度也有很好的去除效果,并且能有效地降低出水致突变活性,保证了饮用水的安全。但该法对污染源水的指标(如氨氮含量)及原处理工艺(如预氯化)部分有一定的要求。
ccas工艺,即连续循环曝气系统工艺(continuouscycleaerat*tem),是一种连续进水式sbr曝气系统。这种工艺是在sbr(sequencingbatchreactor,序批式处理法)的基础上改进而成。sbr工艺早于1914年即研究开发成功,但由于人工操作管理太烦琐、监测手段落后及曝气器易堵塞等问题而难以在大型污水处理厂中推广应用。sbr工艺曾被普遍认为适用于小规模污水处理厂。进入60年代后,自动控制技术和监测技术有了飞速发展,新型不堵塞的微孔曝气器也研制成功,为广泛采用间歇式处理法创造了条件。1968年澳大利亚的新南威尔士大学与美国abj公司合作开发了“采用间歇反应器体系的连续进水,周期排水,延时曝气好氧活性污泥工艺”。1986年美国国家环保局正式承认ccas工艺属于革新代用技术(i/a),成为目前*的电脑控制的生物除磷、脱氮处理工艺。
ccas工艺对污水预处理要求不高,只设间隙15mm的机械格栅和沉砂池。生物处理核心是ccas反应池,除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成,出水可达标排放。
活性炭在水处理中的作用
目前,城市饮用水处理工艺以去除悬浮物、浊度和病原微生物的混凝→沉淀→过滤→消毒常规处理工艺为主,并根据水源水的特性选择适当的处理构筑物类型,组合成饮用水处理工艺流程。消毒方式主要以氯消毒为主,也有少数水厂采用二氧化氯、臭氧或紫外线消毒。出水水质一般要求达到国家颁布的生活饮用水质标准。
对于水质良好的水源,传统的水处理工艺可获得安全合格的饮用水。但随着水源水的污染,在对有机物去除、降低三氮含量这些目前饮用水急需解决的问题上,传统的水处理工艺满足不了要求[3],大部分地区的饮用水虽然经过了常规处理,但仍然含有多种多样的微量有机物,特别是有毒有害、致畸、致癌和致突变物质逐渐增多,人们长期饮用,会出现眩晕、疲劳、脱发、癌症发病率增高等现象[4]。随着城市化和工业化的迅猛发展,饮用水中不断出现新的病原微生物因子,加氯消毒也不能有效杀灭水中的病原菌、病毒和抗氯型的病原寄生虫如贾第虫胞囊和隐孢子虫卵囊等。抗氯型病原微生物如隐孢子虫的出现也使人们对传统的加氯消毒工艺产生了质疑[5]。
为了改善和提高饮用水水质,有效地去除饮用水中微量有机物以及铁、锰、重金属离子等有害物质,防止thms等致畸、致癌物质的产生,世界上众多的国家都开展了这方面的研究,并采取了相应的措施。从现有的资料来看,饮用水深度净化主要采取预氧化、活性炭吸附和臭氧氧化等措施[6]。
活性炭在净化给水方面不仅对色、嗅去除效果良好,而且对合成洗涤剂abs、三卤甲烷(thms)、卤代烃、游离氯也有较高的吸附能力,也能有效地去除几乎无法分解的氨基甲酸酯类杀虫剂等。活性炭能有效地去除水中的游离氯和某些重金属(如hg, sb, sn, cr)且不易产生二次污染,常用于家庭用水及饮用水的净化处理工艺中[7]。活性炭在废水处理方面的主要优点是处理程度高、出水水质稳定。与其他方法配合使用可获得质量很高的出水水质,甚至达到饮用水标准。在净水技术中,一般分为预处理和深度处理技术。
缺氧池
缺氧池一般采用上流式污泥床反应器的形式,设计水力停留时间为2—4小时,池底为污泥床,污泥床厚度通常控制在l一1.2m之间,进水系统可采用脉冲进水中阻力布水系统,底部设布水管,运行时污泥呈悬浮状态。污泥床平均浓度为30—359/l,污泥负荷为o.30—0.35kgbod,(kgmlss·d),污水中do浓度小于0.2m∥lo
2好氧池
2.1基本原理
好氧池是利用污水中的好氧微生物在有游离氧(分子氧)存在的条件下,消化、降解污水中的有机物,使其稳定化、无害化的处理装置。好氧池一般为接触氧化池的形式,池内设置有填料,已经充氧的污水浸没全部填料,并以一定的流速流经填料。微生物一部分以生物膜的形式固着于填料表面,一部分则以絮状悬浮于水中,因此它兼有生物滤池和活性污泥法的特点。接触氧化池中微生物所需的氧通常由人工曝气供给。生物膜生长至一定厚度后,近填料壁的微生物将由于缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用造成部分生物膜脱落,促进了新生物膜的生长,形成生物的新陈代谢。脱落的生物膜随出水进入后续的二沉池。
a-a-o生物脱氮除磷工艺是活性污泥工艺,在进行去除bod、cod、ss的同时可生物脱氮除磷。
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除bod5的作用,但bod5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,bod5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,tp浓度逐渐升高,至缺氧段升至高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,tp保持稳定。在好氧段,由于聚磷菌的吸收,tp迅速降低。在厌氧段和缺氧段,nh3-n浓度稳中有降,至好氧段,随着硝化的进行,nh3-n逐渐降低。在缺氧段,由于内回流带入大量no3-n,no3-n瞬间升高,但随着反硝化的进行,no3-n浓度迅速降低。在好氧段,随着硝化的进行,no3-n浓度逐渐升高。
a/o工艺用于中小型生活污水处理站
aio工艺,即缺氧—好氧污水处理工艺,该工艺具有适应能力强,耐冲击负荷,高容积负荷,不产生污泥膨胀,排泥量少,脱氮效果较好等特点,特别适合于中小型污水处理站选用。a/0工艺由缺氧池和好氧池串联而成,在去除有机物的同时可以取得良好的脱氮效果。该工艺的显著特点是将脱氮池设置在除碳过程的前部,即:先将污水引入缺氧池,回流污泥中的反硝化菌利用原污水中的有机物作为碳源,将回流混合液中的大量硝态氮(no—x-n)还原成n:,从而达到脱氮的目的;污水接着进入好氧池,大部分有机物在此得到消化降解,好氧池后设置二沉池,部分沉淀污泥回流至缺氧池,以提供充足的微生物,同时将好氧池内混合液回流至缺氧池,以保证缺氧池有足够的硝酸盐。
a-a-o脱氮除磷系统的工艺参数及控制
a-a-o生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时地去除bod5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是a-a-o系统工艺系统控制较复杂的主要原因。
1.f/m和srt。*生物硝化,是生物脱氮的前提。因而,f/m(污泥负荷)越低,srt(污泥龄)越高。脱氮效率越高,而生物除磷则要求高f/m低srt。a-a-o生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,f/m一般应控制在0.1-0.18㎏bod5/(kgmlvss·d),srt一般应控制在8-15d。
2.水力停留时间。水力停留时间与进水浓度、温度等因素有关。厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间1.5-2.0h,好氧段水力停留时间一般应在6h。
3.内回流与外回流。内回流比r一般在200-500%之间,具体取决于进水tkn浓度,以及所要求的脱氮效率。一般认为,300-500%时脱氮效率佳。内回流比r与除磷关系不大,因而r的调节*与反硝化工艺一致。
4.溶解氧(do)。厌氧段do应控制在0.2mg/l以下,缺氧段do应控制在0.5mg/l以下,而好氧do应控制在2-3mg/l之间。因生物除磷本身并不消耗氧,所以a-a-o脱氮除磷工艺曝气系统的控制与生物反硝化系统一致。
5.bod5/tkn与bod5/tp。对于生物脱氮来说,bod5/tkn至少应大于4.0,而生物除磷则要求bod5/tp﹥20。运行中应定期核算入流污水水质是否满足bod5/tkn﹥4.0,bod5/tp﹥20。如果其中之一不满足,则应投加有机物补充碳源。为了提高bod5/tkn值,宜投加甲醇做补充碳源。为了提高bod5/tp值,则宜投加乙酸等低级脂肪酸。
6.ph控制及碱度核算。a-a-o生物除磷脱氮系统中,污泥混合液的ph应控制在7.0之上;如果ph﹤6.5,应外加石灰,补充碱度不足。
接触氧化池构造
接触氧化池由池体、填料、布水装置和曝气系统组成,其中填料和曝气系统是接触氧化池的重要组成部分。
填料是微生物的载体,其特性对接触氧化池中微生物的数量、氧的利用率、水流条件及污水与生物膜的接触状况等起着重要的作用。填料要求具有比表面积大、空隙率大、水力阻力小、强度大、化学和生物稳定性好、经久耐用等特点。生活污水中污染物浓度较低,生物膜较薄,为增加生物膜中微生物数量,可选择易于挂膜和比表面积较大的软性纤维填料,如尼龙、维纶、晴纶等。一般情况下,填料层高度为3.0m左右,填料层上水层高度约0.5m,填料层与池底高度为0.5—1.5m。曝气系统按供气方式可分为鼓风曝气、机械曝气和射流曝气,其中,射流曝气又可以细分为强制供气式和自吸供气式,强制供气式利用鼓风机向射流器供给空气,自吸供气式由射流器喷嘴喷出高速射流,使吸气室形成负压,将空气吸入。中小型生活污水处理站一般建设在小区附近,且常采用地埋式或半地埋式,因此,曝气方式宜选择自吸供气式射流曝气,该曝气方式的优点是:氧吸收率高、充氧能力强;污泥活性及其沉降性能好;构造简单、运转灵活、便于调节、维护管理方便;运行噪声较低,适宜在小区内使用。
吸附预处理技术
吸附预处理技术是指利用物质的吸附性能或交换作用来去除水中污染物的方法。目前用于水处理的吸附剂有活性炭、硅藻土、二氧化硅、活性氧化铝、沸石及离子交换树脂。近年来又研制开发了一些新型吸附材料,如多孔合成树脂、活性炭纤维等。其中用的多的是对水中有机污染物和臭味有较强吸附作用的疏水性物质-活性炭。但是粉末活性炭参与混凝沉淀过程后,残留于污泥中,目前尚无很好的回收再生方法,致使处理费用较高,难以推广应用。粘土矿物类吸附剂虽然货源充足、价格便宜,具有很好的吸附性能,但大量粘土投入混凝剂中增加了沉淀池的排泥量,给生产运行带来了一定困难。
一氧-活性炭联用深度处理技术
活性炭是一种由大孔、中孔、微孔组成的多孔性物质, 对有机物的去除主要靠中孔和微孔的吸附作用。臭氧活性炭联用深度处理技术采取先臭氧氧化后活性炭吸附,在活性炭吸附中又继续氧化的方法。其基本原理是在炭层中投加臭氧,使水中的大分子转化为小分子,改变其分子结构形态,提供了有机物进入较小孔隙的可能性,使大孔内活性炭表面的有机物得到氧化分解,从而使活性炭可以充分吸附末被氧化的有机物,达到水质深度净化的目的[8]。当然臭氧活性炭联用技术也有其局限性,如臭氧在破坏一些有机物结构的同时也可能产生一些有毒有害的中间产物。研究结果表明,水源经臭氧2活性炭吸附深度处理,氯化后出水水质可能仍具有致突变性。
经预处理的污水连续不断地进入反应池被活性污泥微生物吸附,并一起从主、预反应区隔墙下部的孔眼以低流速(0.03-0.05m/min)进入反应区。在主反应区内依照“曝气(aeration)、闲置(idle)、沉淀(settle)、排水(decant)”程序周期运行,使污水在“好氧-缺氧”的反复中完成去碳、脱氮,和在“好氧-厌氧”的反复中完成除磷。各过程的历时和相应设备的运行均按事先编制,并可调整的程序,由计算机集中自控。
ccas工艺的*结构和运行模式使其在工艺上具有*的优势:
(1)曝气时,污水和污泥处于*理想混合状态,保证了bod、cod的去除率,去除率高达95%。
(2)“好氧-缺氧”及“好氧-厌氧”的反复运行模式强化了磷的吸收和硝化-反硝化作用,使氮、磷去除率达80%以上,保证了出水指标合格。
(3)沉淀时,整个ccas反应池处于*理想沉淀状态,使出水悬浮物(ss)极低,低的ss值也保证了磷的去除效果。
ccas工艺的缺点是各池子同时间歇运行,人工控制几乎不可能,全赖电脑控制,对处理厂的管理人员素质要求很高,对设计、培训、安装、调试等工作要求较严格。

警惕电子叉车秤液压油温过高
阿托斯ATOS减压阀的使用技巧
井式气体渗碳炉炉罐尺寸的确定
使用生物洁净安全柜 这五大问题需注意
怎么来降低线切割机的使用成本?
每天30吨一体化污水处理设备一体机
玻璃钢轴流式风机维护保养措施
Lambrecht压力传感器00.08121.110002优点应用及结构原理介绍
散射介质成像方法介绍
燃气采暖热水炉的分类使用原理和热水采暖系统的主要形式
边台单价-从经济层面看生物安全实验室的制造
等离子清洗应用于锂电池行业
交流浪涌保护器(防雷器)如何选型?
绝缘油耐压测试仪的特点和安全性需要注意企业
WQ无堵塞潜水排污泵技术性能参数
氢气发生器电解槽的介绍
重庆升亿过滤厂家介绍俩款透平油滤油机的紧缩机
日本smt紧凑且便宜的商用搅拌机均质机分散机PH91
氨氮测定仪按测试方法可分为以下几种
上海鹰牌衡器:电子地磅仪表有故障怎么修?